1. Dekskripsi Data WareHouse
data warehouse adalah kumpulan data dari berbagai sumber yang ditempatkan menjadi satu dalam tempat penyimpanan berukuran besar lalu diproses menjadi bentuk penyimpanan multidimensional dan didesain untuk querying dan reporting.
sumber data pada pada data Warehouse berasal ari berbagai macam format, software, platform dan jaringan yang beda. Data tesebut adalah hasil dari proses transaksi perusahaan / organisasi sehari-hari. karena berasal dari sumber yang berbeda-beda tadi, maka data pada data Warehouse harus tersimpan dalam sebuah format yang baku.
data Warehouse juga merupakan salah satu sistem pendukung keputusan, yaitu dengan menyimpan data dari berbagai sumber, mengorganisasikannya dan dianalisa oleh para pengambl kebijakan.Akan tetapi datawarehouse tidak dapat memberikan keputusan secara langsung. Namun ia dapat memberikan informasi yang dapat membuat user menjadi lebih paham dalam membuat kebijakan strategis.
karakteristik umum yang dimiliki warehouse adalah :
- data terintregasi dari berbagai smber yang berasal dari proses transaksional (OLTP)
- data dibuat konsisten
- merupakan aggregate data/kesimpulan data, bukan data yang terperinci
- data bertahan lebih lama
- data tersimpan dalam format yang tepat sehingga proses query dan analisa dapat dilakukan dengan cepat
- data bersifat read only
KELEBIHAN
- data terorgnisir dengan baik untuk query analisis dan sebagai bahan yang baik untuk proses transaksi
- perbedaan struktur data yang banyak macamnya dari sumber ang berbeda dapat diatasi.
- memiliki aturan transformasi untuk memvalidasi dan menkonsolidasi data dari OLTP ke data warehouse
- masalah keamanan dan kinerja dapat dipecahkan tanpa perlu mengubah sistem produksi.
- memiliki model data yang banyak macamnya, dan tidak tergantung dari format data awal/sumbernya, sehingga memudahkan dalam menciptakan laporan.
- proses transformasi/perpindahan dapat dimonitoring. jika terjadi kesalahan dapat diarahkan/diluruskan
- informasi yang disimpan dalam datawarehouse, jadi ketika OLTP data sumbernya hilang, informasi yang diolah tetap terjaga dalam suatu warehouse
- data warehouse tidak memperlambat kerja operasional transaksi
- dapat menyediakan laporna yang bermacam-macam.
KERUGIAN
- data warehouse bukan merupakan lingkungan yang cocok untuk data yang tidak terstuktur.
- data perlu diekstrak, diubah (ETL) dan diload ke data warehouse sehingga membutuhkan tenggang waktu untuk memindahkannya
- semakin lama dipelihara, semakin besar biaya untuk merawat sebuah data warehouse .
- data warehouse dapat menjadi ketinggalan dari data terbaru yang relatfi cepat sehingga data yang ada tidak optimal
2. Deskripsi Data Mart
Data mart adalah suatu bagian pada data warehouse yang mendukung pembuatan laporan dan analisa data pada suatu unit, bagian atau operasi pada suatu perusahaan. dalam beberapa implementasi data warehouse, data mart adalah miniature data warehouse. data mart sering digunakan untuk memberikan informasi kepada segment fungsional organisasi. contoh data mart adalah unutk departemen penjualan, departemen persediaan dan pengiriman, departemen keuangan, manajemen tingkat atas dan lain-lain. data mart juga dapat digunakan untuk gudang data segmen data untuk mencerminkan bisnis secara geografis teletak dimana masing-masing daerah relatif otonom. Sebagai contoh, sebuah organisasi layanan yang besar mungkin memprlakukan pusat operasi regional sebagai unit usaha perorangan, masing-masing dengan data mart sendiri yang memberikan konstribusi untuk gudang dan data master.Data mart harus dirancang dari perspektif bahwa mereka adalah komponen dari data warehouse terlepas dari fungsi masing-masing atau konstruksi. Ini menyediakan konsistensi dan kegunaan dari informasi seluruh organisasi.
contoh produk data mart sebagai berikut :
- SmartMart(IBM)
- Visual Warehouse (IBM)
- PowerMart (Informatica)
karakteristik Data Mart adalah :
- Data mart memfokuskan hanya pada kebutuhan-kebutuhan pemakai yang terkait dalam sebuah departemen atau funsi bisnis.
- data mart biasanya tidak mengandung data operasional yang rinci seperti pada data warehouse.
- data mart hanya mengandung sedikit informasi dibandingkan dengan data warehouse.
- data mart lebih mudah dipahami
- data mart bisa bersifat dependent atau independent
- kubus
- aggregation
KELEBIHAN
Data mart dapat meningkatkan waktu respon pengguna akhir, karena berisi data mentah yang memungkinkan sistem komputer untuk fokus pada satu tugas, sehingga meningkatkan kinerja. Berbeda dengan sistem OLTP, data mart juga dapat menyimpan data historis yang memungkinkan pengguna untuk menganalisis kecenderungan data. Selain itu, data mart tidak begitu mahal dan kompleks sebagai data gudang untuk setup dan melaksanakan karena masalah teknis tidak begitu sulit untuk diselesaikan.
KERUGIAN
mereka memiliki nilai yang terbatas karena mereka tidak dapat melihat organisasi secara keseluruhan dan pelaporan dan analisis potensi tebatas.
3. Deskripsi Data Mining
Data Mining adalah serangkaian proses untuk menggali nilai tambah dari suatu kumpulan data berupa pengetahuan yang selama ini tidak diketahui secara manual. Patut diingat bahwa kata mining sendiri berarti usaha untuk mendapatkan sedikit barang berharga dari sejumlah besar material dasar. Karena itu Data Mining sebenarnya memiliki akar yang panjang dari bidang ilmu seperti kecerdasan buatan (artificial intelligent), machine learning, statistik dan database. Data mining adalah proses menerapkan metode ini untuk data dengan maksud untuk mengungkap pola-pola tersembunyi. Dengan arti lain Data mining adalah proses untuk penggalian pola-pola dari data. Data mining menjadi alat yang semakin penting untuk mengubah data tersebut menjadi informasi. Hal ini sering digunakan dalam berbagai praktek profil, seperti pemasaran, pengawasan, penipuan deteksi dan penemuan ilmiah. Telah digunakan selama bertahun-tahun oleh bisnis, ilmuwan dan pemerintah untuk menyaring volume data seperti catatan perjalanan penumpang penerbangan, data sensus dan supermarket scanner data untuk menghasilkan laporan riset pasar.
Alasan utama untuk menggunakan data mining adalah untuk membantu dalam analisis koleksi pengamatan perilaku. Data tersebut rentan terhadap collinearity karena diketahui keterkaitan. Fakta yang tak terelakkan data mining adalah bahwa subset/set data yang dianalisis mungkin tidak mewakili seluruh domain, dan karenanya tidak boleh berisi contoh-contoh hubungan kritis tertentu dan perilaku yang ada di bagian lain dari domain . Untuk mengatasi masalah semacam ini, analisis dapat ditambah menggunakan berbasis percobaan dan pendekatan lain, seperti Choice Modelling untuk data yang dihasilkan manusia. Dalam situasi ini, yang melekat dapat berupa korelasi dikontrol untuk, atau dihapus sama sekali, selama konstruksi desain eksperimental. Beberapa teknik yang sering disebut-sebut dalam literatur Data Mining dalam penerapannya antara lain: clustering, classification, association rule mining, neural network, genetic algorithm dan lain-lain. Yang membedakan persepsi terhadap Data Mining adalah perkembangan teknik-teknik Data Mining untuk aplikasi pada database skala besar. Sebelum populernya Data Mining, teknik-teknik tersebut hanya dapat dipakai untuk data skala kecil saja.
fungsi data Mining :
- fungsi Deskriptif : fungsi data Mining yang memberikan deskriptif /gambaran dari data yang tersedian. contoh : produk yang sering dibeli.
- fungsi Prediktif : fungsi data Mining yang memberikan prediksi/target pencapaian dari informasi sumber data. contoh : prospek kerja presiden untuk 3 tahun kedepan
KELEBIHAN
- kemampuan dalam mengolah data dalam jumlah yang besar
- pencarian data secara otomatis
KEKURANGAN
- kendala database
- tidak bisa melakukan analisa sendiri.
4. Deskripsi Data OLAP
OLAP (Online Analitycal Processing)
adalah teknologi yang memproses data di dalam database dalam struktur
multidimensi, menyediakan jawaban yang cepat untuk query dan analisis yang
kompleks [4]. Data yang disajikan biasanya merupakan suatu fungsi agregasi
seperti summary, max, min, average dan lain-lain.
karakteristik dari OLAP yaitu :
- mengijinkan user melihat data dari sudut pandang logical dan multidimensional pada data warehouse
- memfasilitasi query yang komplek dan analisa bagi user.
- mengijinkan user melakukan Drill down untuk menampilkan data pada level yang lebih detil atau roll up untuk agregasi dari satu dimensi atau beberapa dimensi.
- menyediakan proses kalkulasi dan perbandingan data
- menampilkan hasil dalam bentuk number termasuk dalam tabel dan grafik.
5. Deskripsi Data MOLAP
Multidimensional online analitycal processing (MOLAP) menyimpan data dan
aggregasi pada struktur data multidimensi. Struktur MOLAP ini tidak tersimpan
pada datawarehouse tapi tersimpan pada OLAP server. Sehingga performa query
yang dihasilkan olehnya sangat bagus. Model penyimpanan ini sesuai
untuk database dengan ukuran kecil sampai sedang.
6. Deskripsi Data ROLAP
ROLAP (Relational online analitycal processing ) menggunakan tabel
pada database relasional datawarehouse untuk menyimpan detil data dan aggregasi
kubus. Berbeda dengan MOLAP, ROLAP tidak menyimpan salinan database, ia
mengakses langsung pada tabel fact ketika membutuhkan jawaban sebuah query.
Sehingga query pada ROLAP mempunyai response time yang
lebih lambat dibandingkan ROLAP maupun HOLAP. Karakteristik model ini digunakan
untuk menyimpan data yang besar dan jarang dilakukannya proses query.
Misalkan, data histori dalam jumlah besar dari beberapa tahun yang sebelumnya.
7. Deskripsi Data HOLAP
Gabungan model MOLAP dan ROLAP dapat kita peoleh dari HOLAP (Hibrid
online analitycal processing) Detil data tersmpan pada tabel relasional
tapi aggregasi data disimpan dalam format multidimensi. Misalkan proses drill
down dilakukan pada sebuah tabel fakta, maka retrive data
akan dilakukan dari tabel database relasional sehingga query tidak
secepat MOLAP. Kubus HOLAP lebih kecil daripada kubus MOLAP tapi response
time query masih lebih cepat jika dibandingkan dengan ROLAP. Model
penyimpanan HOLAP ini biasanya sesuai untuk kubus yang membutuhkan
performa query yang bagus dengan jumlah data yang besar.
8. BUSINESS INTELLIGENCE
Istilah Business Intelligence pertama
kali didengungkan pada tahun 1989 oleh Howard Dresner. Dia menggambarkan
istilah tersebut sebagai seperangkat konsep dan metode yang berguna untuk
meningkatkan pembuatan keputusan dengan bantuan sistem yang berbasiskan fakta
atau realita yang terjadi.Menurut tim studi Busines Intelligence pada Departemen
Keuangan Indonesia menyatakan,Business Intelligence (BI) merupakan
sistem dan aplikasi yang berfungsi untuk mengubah data-data dalam suatu
perusahaan atau organisasi (data operasional, data transaksional, atau data
lainnya) ke dalam bentuk pengetahuan. Aplikasi ini melakukan analisis data-data
di masa lampau, menganalisisnya dan kemudian menggunakan pengetahuan
tersebut untuk mendukung keputusan dan perencanaan organisasi(Indonesia,
2007).Dari definisi itu, dapat dikatakan bahwa Business Intelligence merupakan
suatu sistem pendukung keputusan yang berdasarkan pada data-data fakta kinerja
perusahaan. Business Intelligence berguna untuk mengefisienkan
finansial, manusia, material serta beberapa sumber daya lainya.
Business Intelligence
Software (BI) secara singkat juga dikenal sebagai dashboard. Ini karena secara
umum BI berfungsi seperti halnya dashboard pada kendaraan. BI memberikan metrik
(ukuran-ukuran) yang menentukan performa kendaraan (organisasi). BI juga
memberikan informasi kondisi internal, seperti halnya suhu pada kendaraan. Dan
BI juga memberikan sinyal-sinyal pada pengemudi bila terjadi kesalahan pada
kendaraan, seperti bila bensin akan habis pada kendaraan. Semuanya berguna bagi
pengemudi agar mampu mengendalikan kendaraannya dengan lebih baik dan mampu
membuat keputusan yang tepat dengan lebih cepat. Pada prakteknya, BI akan berfungsi sebagai
analis, penghitung scorecard,
sekaligus memberikan rekomendasi pada user
terhadap tindakan yang sebaiknya diambil. Dengan menjalankan fungsi dashboard,
user BI akan mengenali potensi ketidakberesan pada perusahaan sekaligus dengan
penyebabnya sebelum hal tersebut berkembang menjadi masalah yang besar. BI akan
berfungsi memberikan advance alarm, memberikan informasi trend dan melakukan
benchmark. BI berfungsi untuk
membantu dalam membuat keputusan perusahaan atau bisnis secara cepat dan
akurat.
KEUNTUNG
Ada 7 keunggulan utama
BI yang akan memberikan value bagi perusahaan adalah sebagai berikut:
1. Konsolidasi informasi Dengan BI dijalankan di dalam perusahaan, data akan
diolah dalam satu platform dan disebarkan dalam bentuk informasi yang berguna
(meaningful) ke seluruh organisasi. Dengan ketiadaan information assymmetry,
kolaborasi dan konsolidasi di dalam perusahaan dapat diperkuat. Dengan
konsolidasi, maka dapat dimungkinkan pembuatan cross-functional dan
corporate-wide reports. Meskipun harus diakui, benefit ini juga mampu
disediakan oleh software ERP.
2. In-depth reporting Software Business Process Management (BPM) memang mampu
memberikan report dan analisis, namun cukup sederhana dan hanya bertolak pada
kondisi intern. Sedangkan BI mampu menyediakan informasi untuk isu-isu bisnis
yang lebih besar pada level strategis.
3. Customized Graphic User Interface (GUI) Beberapa ERP memang berusaha
membuat tampilan GUI yang user friendly, namun BI melangkah lebih jauh dengan
menyediakan fasilitas kustomisasi GUI. Sehingga tampilan GUI jauh dari kesan
teknis dan memberikan view of business sesuai dengan keinginan masing-masing
user.
4. Sedikit masalah teknis Ini karena pertama sifatnya yang user
friendly meminimasi kemungkinan operating error dari user, dan kedua
BI hanya merupakan software pada layer teratas (information processing) dan bukan
business process management.
5. Biaya pengadaan rendah Karena BI hanya software yang bekerja pada layer
teratas dari pengolahan informasi, harga software-nya tidak semahal ERP. Biaya
pengadaannya pun menjadi lebih murah dibandingkan ERP. Apalagi saat ini banyak
ditunjang juga oleh produk BI yang open source.
6. Flexible databank BI membuka kemungkinan untuk berkolaborasi dengan ERP
sebagai pemasok databank yang akan diolah menjadi reports dan scorecard, namun
BI juga dapat bekerja dari databank yang dibuat terpisah. BI pun menjadi
terbuka untuk digunakan oleh analis profesional dan peneliti, yang data
olahannya bersifat sekunder.
7. Responsiveness Sifat BI lain yang tidak dimiliki oleh ERP adalah dalam hal
kecepatan (responsiveness). Misalnya pada penghitungan service level sebagai
salah satu Key Performance Indicator (KPI). Fungsi BI akan memberikan
peringatan kepada user sebelum batas bawah dalam service level (lower limit)
terlampaui. Akibatnya masalah bisa ditangani sebelum benar-benar muncul ke
permukaan. Salah satu contoh padResponsivenessa industri kesehatan, penggunaan
BI berjasa mencegah penyebaran suatu penyakit/wabah secara luas (outbreak).
Nama-nama vendor BI memang masih asing di Indonesia.
Pengaplikasian Business Intelligence :
Hingga saat ini, organisasi yang telah
mengimplementasikan komponen dari Enterprise Performance Management System dan
Business Intelligence Oracle pada tahun fiskal 2008 di antaranya Bank of
Communications (Cina), CJ Entertainment (Korea), GM Daewoo Auto &
Technology (Korea), Huadian Power (China), Hyunjin Materials (Korea), Kolon
(Korea), Korea Investment & Securities (Korea), Korea Land Corporation,
Korea Zinc (Korea), MIDEA (China), New World Department Stores (Hong Kong),
Samsung Electronics (Korea), Sterlite Industries (India) Ltd. (India), Vedanta
Resources plc (India), dan Woori Bank (Korea).
PT Coca Cola Distribution Indonesia dan
Ayala Corporation dari Filipina tercatat telah mengadopsi komponen software
Enterprise Performance Management (EPM) dan Business Intelligence (BI) dari
Oracle.
Alternatif lain
menggunakan produk BI open source yang saat ini makin populer, yaitu
Pentaho.Pentaho Corporation didirikan pada tahun 2004 oleh Richard Daley.
Richard sebelumnya telah bekerja di IBM dan bertanggung jawab terhadap bagian
BI. Pentaho dalam perjalanannya melakukan akuisisi terhadap berbagai proyek
open source terkenal dan melakukan perbaikan terhadapnya seperti JFreeReport.
Disusul oleh Mondrian, Kettle dan Weka dimana semua lead developer dari proyek
ini tetap dipertahankan.
Dengan demikian stack
solusi BI untuk Pentaho semakin lengkap dan bisa dibilang tahun 2007 dan 2008
merupakan tahun keemasan Pentaho dengan peningkatan penjualan lisensi (Pentaho
menerapkan opsi dual lisensi: gratis dan berbayar) dan meraih banyak penghargaan.